Carbon dioxide: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(→‎References: Added a publication)
m (→‎References: Added a recent publication)
 
(12 intermediate revisions by the same user not shown)
Line 5: Line 5:
The BBV (Bock, Bich and Vogel) model <ref>[http://dx.doi.org/10.1016/S0301-0104(00)00161-0  S. Bock, E. Bich and E. Vogel "A new intermolecular potential energy surface for carbon dioxide from ab initio calculations", Chemical Physics '''257''' pp. 147-156 (2000)]</ref>.
The BBV (Bock, Bich and Vogel) model <ref>[http://dx.doi.org/10.1016/S0301-0104(00)00161-0  S. Bock, E. Bich and E. Vogel "A new intermolecular potential energy surface for carbon dioxide from ab initio calculations", Chemical Physics '''257''' pp. 147-156 (2000)]</ref>.
====EPM====
====EPM====
A series of popular models for CO<sub>2</sub> are those of Harris and Yung <ref>[http://dx.doi.org/10.1021/j100031a034 Jonathan G. Harris and Kwong H. Yung "Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model", Journal of Physical Chemistry '''99''' pp. 12021-12024 (1995)]</ref>, namely the '''EPM Rigid''', the '''EPM Flexible''' and the '''EPM2''' models.
The elementary physical model (EPM) and EPM2 of Harris and Yung <ref>[http://dx.doi.org/10.1021/j100031a034 Jonathan G. Harris and Kwong H. Yung "Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model", Journal of Physical Chemistry '''99''' pp. 12021-12024 (1995)]</ref>
consists of [[Lennard-Jones model | 12-6 Lennard-Jones sites]] in conjunction with partial charges centred on each of these sites.
 
{| style="width:80%; height:100px" border="1"
|-
| Model || <math>r_{\mathrm {OC}}</math> (&Aring;)||  <math>k_{\theta}</math>  kJ/mol/rad<sup>2</sup> ||<math>\sigma_{C-C}</math> (&Aring;)|| <math>\epsilon_{C-C}/k_B</math> (K)||<math>\sigma_{O-O}</math> (&Aring;)|| <math>\epsilon_{O-O}/k_B</math> (K)||<math>\sigma_{C-O}</math> (&Aring;)|| <math>\epsilon_{C-O}/k_B</math> (K)|| q(O) (e) || q(C) (e)
|-
| EPM || 1.161  || 1275 ||  2.785 || 28.999 || 3.064 || 82.997 || 2.921 || 49.060  ||  -0.33225 || +0.6645
|-
| EPM2 || 1.149  || 1236 ||  2.757 || 28.129 || 3.033 || 80.507 || 2.892 || 47.588  ||  -0.32560 || +0.6512
|}
 
The bond bending potential is given by
:<math>
\Phi_{bend}(\theta) = \frac{1}{2} k_{\theta} \left( \theta - \theta_0 \right)^2
</math>
where <math>\theta_0 = 180</math> degrees.
 
====GCPCDO====
====GCPCDO====
Gaussian charge polarizable carbon dioxide (GCPCDO) model <ref>[http://dx.doi.org/10.1063/1.3519022 Rasmus A. X. Persson "Gaussian charge polarizable interaction potential for carbon dioxide", Journal of Chemical Physics '''134''' 034312 (2011)]</ref>.
Gaussian charge polarizable carbon dioxide (GCPCDO) model <ref>[http://dx.doi.org/10.1063/1.3519022 Rasmus A. X. Persson "Gaussian charge polarizable interaction potential for carbon dioxide", Journal of Chemical Physics '''134''' 034312 (2011)]</ref>.
====Merker,  Engin,  Vrabec and  Hasse====
The Merker,  Engin,  Vrabec and  Hasse model
<ref>[http://dx.doi.org/10.1063/1.3434530  Thorsten Merker, Cemal Engin, Jadran Vrabec and Hans Hasse "Molecular model for carbon dioxide optimized to vapor-liquid equilibria", Journal of Chemical Physics '''132''' 234512 (2010)] </ref>
consists of three [[Lennard-Jones model | 12-6 Lennard-Jones sites]] along with a point quadrupole (<math>Q=4.0739</math> D&Aring;) placed on the carbon site. The model is given by
<math>r_{\mathrm {OC}}</math>  = 1.2869 &Aring;, <math>\sigma_{C}=</math> 2.8137 &Aring; <math>\epsilon_{C}/k_B=</math> 12.3724 K and <math>\sigma_{O}=</math> 2.9755 &Aring;, <math>\epsilon_{O}/k_B=</math> 100.493 K.
====Murthy, Singer and McDonald====
====Murthy, Singer and McDonald====
Murthy, Singer and McDonald proposed four models <ref>[http://dx.doi.org/10.1080/00268978100102331 C. S. Murthy, K. Singer, and I. R. McDonald "Interaction site models for carbon dioxide", Molecular Physics '''44''' pp. 135-143 (1981)]</ref>, two models (A1 and A2) consisting of two [[Lennard-Jones model | 12-6 Lennard-Jones sites]] located roughly on the [[oxygen]] atoms, plus a point quadrupole located at the molecular centre of mass. Model B differed from models A1 and A2 in the use of the [[9-6 Lennard-Jones potential]], and model C was a three site model using the [[Combining rules#Lorentz-Berthelot rules| Lorentz-Berthelot combining rules]] for the C-O interactions .
Murthy, Singer and McDonald proposed four models <ref>[http://dx.doi.org/10.1080/00268978100102331 C. S. Murthy, K. Singer, and I. R. McDonald "Interaction site models for carbon dioxide", Molecular Physics '''44''' pp. 135-143 (1981)]</ref>, two models (A1 and A2) consisting of two [[Lennard-Jones model | 12-6 Lennard-Jones sites]] located roughly on the [[oxygen]] atoms, plus a point quadrupole located at the molecular centre of mass. Model B differed from models A1 and A2 in the use of the [[9-6 Lennard-Jones potential]], and model C was a three site model using the [[Combining rules#Lorentz-Berthelot rules| Lorentz-Berthelot combining rules]] for the C-O interactions.
====MYVPBMM====
The Mognetti ''et al.'' model <ref>[http://dx.doi.org/10.1063/1.2837291  B. M. Mognetti, L. Yelash, P. Virnau, W. Paul, K. Binder, M. Müller, and L. G. MacDowell "Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: The case of carbon dioxide", Journal of Chemical Physics '''128''' 104501 (2008)]</ref>
<ref>[http://dx.doi.org/10.1080/00268970902755025 B. M. Mognetti,  M. Oettel, P. Virnau,  L. Yelash, and K. Binder "Structure and pair correlations of a simple coarse grained model for supercritical carbon dioxide",  Molecular Physics '''107''' pp. 331-341 (2009)]</ref>
is a [[Coarse graining|coarse–grained]] model having either explicit (point)
quadrupolar interactions or spherically averaged quadrupolar interactions, in conjunction with a  single [[Lennard-Jones model | 12-6 Lennard-Jones site]].
====Oakley and  Wheatley====
====Oakley and  Wheatley====
The Oakley and  Wheatley (OW) model <ref>[http://dx.doi.org/10.1063/1.3059008  Mark T. Oakley and Richard J. Wheatley "Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles", Journal of Chemical Physics '''130''' 034110 (2009)]</ref>.
The Oakley and  Wheatley (OW) model <ref>[http://dx.doi.org/10.1063/1.3059008  Mark T. Oakley and Richard J. Wheatley "Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles", Journal of Chemical Physics '''130''' 034110 (2009)]</ref>.
Line 16: Line 43:
====SYM====
====SYM====
The SYM model <ref>[http://dx.doi.org/10.1021/jp204563n Kuang Yu, Jesse G. McDaniel, and J. R. Schmidt "Physically Motivated, Robust, ab Initio Force Fields for CO2 and N2", Journal of Physical Chemistry B '''115''' pp. 10054-10063 (2011)]</ref><ref>[http://dx.doi.org/10.1063/1.3672810 Kuang Yu and J. R. Schmidt "Many-body effects are essential in a physically motivated CO2 force field", Journal of Chemical Physics  '''136''' 034503 (2012)]</ref>.
The SYM model <ref>[http://dx.doi.org/10.1021/jp204563n Kuang Yu, Jesse G. McDaniel, and J. R. Schmidt "Physically Motivated, Robust, ab Initio Force Fields for CO2 and N2", Journal of Physical Chemistry B '''115''' pp. 10054-10063 (2011)]</ref><ref>[http://dx.doi.org/10.1063/1.3672810 Kuang Yu and J. R. Schmidt "Many-body effects are essential in a physically motivated CO2 force field", Journal of Chemical Physics  '''136''' 034503 (2012)]</ref>.
====TraPPE====
Parameters for CO<sub>2</sub> for use in the [[TraPPE force field]] are C having <math>\epsilon/k_B= 27.0</math>K and <math>\sigma = 2.80</math>&Aring; with a partial charge of 0.70 e, and O having <math>\epsilon/k_B= 79.0</math>K and <math>\sigma = 3.05</math>&Aring; with a partial charge of -0.35 e  <ref>[http://dx.doi.org/10.1002/aic.690470719 Jeffrey J. Potoff and J. Ilja Siepmann "Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen", AIChE Journal '''47''' pp. 1676-1682 (2001)]</ref>. The molecular geometry is rigid, linear, with a C-C bond length set at the experimental value of 1.16  &Aring;. Unlike interactions use the [[Combining rules#Lorentz-Berthelot rules| Lorentz-Berthelot combining rules]].
====Zhang and Duan====
Parameters for CO<sub>2</sub> for the Zhang and Duan model
<ref>[http://dx.doi.org/10.1063/1.1924700 Zhigang Zhang and Zhenhao Duan "An optimized molecular potential for carbon dioxide", Journal of Chemical Physics '''122'''  214507 (2005)]</ref>
<ref>[http://dx.doi.org/10.1063/1.2965899 Thorsten Merker, Jadran Vrabec, and Hans Hasse "Comment on “An optimized potential for carbon dioxide”", Journal of Chemical Physics '''129''' 087101 (2008)]</ref>
<ref>[http://dx.doi.org/10.1063/1.2965900 Zhigang Zhang and Zhenhao Duan "Response to "Comment on 'An optimized potential for carbon dioxide' "", Journal of Chemical Physics '''129''' 087102 (2008)]</ref>
are C having <math>\epsilon/k_B= 28.845</math>K and <math>\sigma = 2.7918</math>&Aring; with a partial charge of 0.5888 e, and O having <math>\epsilon/k_B= 82.656</math>K and <math>\sigma = 3.00</math>&Aring; with a partial charge of -0.2944 e. The molecular geometry is rigid, linear, with a C-C bond length set at the experimental value of 1.163  &Aring;. Unlike interactions use the [[Combining rules#Lorentz-Berthelot rules| Lorentz-Berthelot combining rules]].
==Phase diagram==
<ref>[http://www.jce.divched.org/Journal/Issues/2002/Jul/abs874.html L. Glasser "Equations of state and phase diagrams",  Journal of Chemical Education '''79''' 874 (2002)]</ref>
<ref>[http://jchemed.chem.wisc.edu/journal/issues/2009/May/abs566.html  A. Herráez, R. M. Hanson, and L. Glasser "Interactive 3D phase diagrams using Jmol" Journal of Chemical Education '''86''': 566 (2009)] and [http://biomodel.uah.es/Jmol/plots/phase-diagrams/ website]</ref>
<ref>[http://dx.doi.org/10.1063/1.4792443  G. Pérez-Sánchez, D. González-Salgado, M. M. Piñeiro, and C. Vega "Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: The role of the quadrupole", Journal of Chemical Physics '''138''' 084506 (2013)]</ref>
==Transport properties==
<ref>[http://dx.doi.org/10.1063/1.4896538  C. G. Aimoli, E. J. Maginn and C. R. A. Abreu "Transport properties of carbon dioxide and methane from molecular dynamics simulations", Journal of Chemical Physics '''141''' 134101 (2014)]</ref>
<ref>[http://dx.doi.org/10.1063/1.4896965 Thuat T. Trinh, Thijs J. H. Vlugt and Signe Kjelstrup "Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields", Journal of Chemical Physics '''141''' 134504 (2014)]</ref>
==References==
==References==
<references/>
<references/>
'''Related reading'''
'''Related reading'''
*[http://dx.doi.org/10.1063/1.1680756 Trevor G. Gibbons and Michael L. Klein "Thermodynamic properties for a simple model of solid carbon dioxide: Monte Carlo, cell model, and quasiharmonic calculations", Journal of Chemical Physics '''60''' pp. 112-126 (1974)]
*[http://dx.doi.org/10.1063/1.1680756 Trevor G. Gibbons and Michael L. Klein "Thermodynamic properties for a simple model of solid carbon dioxide: Monte Carlo, cell model, and quasiharmonic calculations", Journal of Chemical Physics '''60''' pp. 112-126 (1974)]
* [http://dx.doi.org/10.1080/00268979100100341  R. Eggenberger, S. Gerber, and H. Huber "The carbon dioxide dimer", Molecular Physics '''72''' pp. 433-439 (1991)]
*[http://dx.doi.org/10.1080/00268979100100341  R. Eggenberger, S. Gerber, and H. Huber "The carbon dioxide dimer", Molecular Physics '''72''' pp. 433-439 (1991)]
*[http://www.jce.divched.org/Journal/Issues/2002/Jul/abs874.html L. Glasser "Equations of state and phase diagrams",  Journal of Chemical Education '''79''' 874 (2002)]
*[http://dx.doi.org/10.1063/1.4974995 Robert Hellmann "Nonadditive three-body potential and third to eighth virial coefficients of carbon dioxide", Journal of Chemical Physics '''146''' 054302 (2016)]
*[http://dx.doi.org/10.1063/1.1924700 Z. Zhang and Z. Duan  "An optimized molecular potential for carbon dioxide", Journal of Chemical Physics '''122'''  214507 (2005)]
**[http://dx.doi.org/10.1063/1.2965899 Thorsten Merker, Jadran Vrabec, and Hans Hasse "Comment on “An optimized potential for carbon dioxide”", Journal of Chemical Physics '''129''' 087101 (2008)]
*[http://dx.doi.org/10.1063/1.2837291  B. M. Mognetti, L. Yelash, P. Virnau, W. Paul, K. Binder, M. Müller, and L. G. MacDowell "Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: The case of carbon dioxide", Journal of Chemical Physics '''128''' 104501 (2008)]
*[http://dx.doi.org/10.1080/00268970902755025 B. M. Mognetti,  M. Oettel, P. Virnau,  L. Yelash, and K. Binder "Structure and pair correlations of a simple coarse grained model for supercritical carbon dioxide",  Molecular Physics '''107''' pp. 331-341 (2009)]
*[http://jchemed.chem.wisc.edu/journal/issues/2009/May/abs566.html  A. Herráez, R. M. Hanson, and L. Glasser "Interactive 3D phase diagrams using Jmol" Journal of Chemical Education '''86''': 566 (2009)] and [http://biomodel.uah.es/Jmol/plots/phase-diagrams/ website]
*[http://dx.doi.org/10.1063/1.4792443  G. Pérez-Sánchez, D. González-Salgado, M. M. Piñeiro, and C. Vega "Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: The role of the quadrupole", Journal of Chemical Physics '''138''' 084506 (2013)]


==External resources==
==External resources==
Line 34: Line 72:
[[category:phase diagrams]]
[[category:phase diagrams]]
[[category: Contains Jmol]]
[[category: Contains Jmol]]
{{Numeric}}

Latest revision as of 10:55, 13 February 2017


<jmol>

 <jmolApplet>
 <script>set spin X 10; spin on</script>
 <size>200</size>
 <color>lightgrey</color>
   <wikiPageContents>carbon_dioxide.pdb</wikiPageContents>
</jmolApplet>
</jmol>
Carbon dioxide

Carbon dioxide (CO2)

Models[edit]

BBV[edit]

The BBV (Bock, Bich and Vogel) model [1].

EPM[edit]

The elementary physical model (EPM) and EPM2 of Harris and Yung [2] consists of 12-6 Lennard-Jones sites in conjunction with partial charges centred on each of these sites.

Model (Å) kJ/mol/rad2 (Å) (K) (Å) (K) (Å) (K) q(O) (e) q(C) (e)
EPM 1.161 1275 2.785 28.999 3.064 82.997 2.921 49.060 -0.33225 +0.6645
EPM2 1.149 1236 2.757 28.129 3.033 80.507 2.892 47.588 -0.32560 +0.6512

The bond bending potential is given by

where degrees.

GCPCDO[edit]

Gaussian charge polarizable carbon dioxide (GCPCDO) model [3].

Merker, Engin, Vrabec and Hasse[edit]

The Merker, Engin, Vrabec and Hasse model [4] consists of three 12-6 Lennard-Jones sites along with a point quadrupole ( DÅ) placed on the carbon site. The model is given by = 1.2869 Å, 2.8137 Å 12.3724 K and 2.9755 Å, 100.493 K.

Murthy, Singer and McDonald[edit]

Murthy, Singer and McDonald proposed four models [5], two models (A1 and A2) consisting of two 12-6 Lennard-Jones sites located roughly on the oxygen atoms, plus a point quadrupole located at the molecular centre of mass. Model B differed from models A1 and A2 in the use of the 9-6 Lennard-Jones potential, and model C was a three site model using the Lorentz-Berthelot combining rules for the C-O interactions.

MYVPBMM[edit]

The Mognetti et al. model [6] [7] is a coarse–grained model having either explicit (point) quadrupolar interactions or spherically averaged quadrupolar interactions, in conjunction with a single 12-6 Lennard-Jones site.

Oakley and Wheatley[edit]

The Oakley and Wheatley (OW) model [8].

SAPT-s[edit]

SAPT (symmetry-adapted perturbation theory) [9].

SYM[edit]

The SYM model [10][11].

TraPPE[edit]

Parameters for CO2 for use in the TraPPE force field are C having K and Å with a partial charge of 0.70 e, and O having K and Å with a partial charge of -0.35 e [12]. The molecular geometry is rigid, linear, with a C-C bond length set at the experimental value of 1.16 Å. Unlike interactions use the Lorentz-Berthelot combining rules.

Zhang and Duan[edit]

Parameters for CO2 for the Zhang and Duan model [13] [14] [15] are C having K and Å with a partial charge of 0.5888 e, and O having K and Å with a partial charge of -0.2944 e. The molecular geometry is rigid, linear, with a C-C bond length set at the experimental value of 1.163 Å. Unlike interactions use the Lorentz-Berthelot combining rules.

Phase diagram[edit]

[16] [17] [18]

Transport properties[edit]

[19] [20]

References[edit]

  1. S. Bock, E. Bich and E. Vogel "A new intermolecular potential energy surface for carbon dioxide from ab initio calculations", Chemical Physics 257 pp. 147-156 (2000)
  2. Jonathan G. Harris and Kwong H. Yung "Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model", Journal of Physical Chemistry 99 pp. 12021-12024 (1995)
  3. Rasmus A. X. Persson "Gaussian charge polarizable interaction potential for carbon dioxide", Journal of Chemical Physics 134 034312 (2011)
  4. Thorsten Merker, Cemal Engin, Jadran Vrabec and Hans Hasse "Molecular model for carbon dioxide optimized to vapor-liquid equilibria", Journal of Chemical Physics 132 234512 (2010)
  5. C. S. Murthy, K. Singer, and I. R. McDonald "Interaction site models for carbon dioxide", Molecular Physics 44 pp. 135-143 (1981)
  6. B. M. Mognetti, L. Yelash, P. Virnau, W. Paul, K. Binder, M. Müller, and L. G. MacDowell "Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: The case of carbon dioxide", Journal of Chemical Physics 128 104501 (2008)
  7. B. M. Mognetti, M. Oettel, P. Virnau, L. Yelash, and K. Binder "Structure and pair correlations of a simple coarse grained model for supercritical carbon dioxide", Molecular Physics 107 pp. 331-341 (2009)
  8. Mark T. Oakley and Richard J. Wheatley "Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles", Journal of Chemical Physics 130 034110 (2009)
  9. Robert Bukowski, Joanna Sadlej, Bogumil Jeziorski, Piotr Jankowski, Krzysztof Szalewicz, Stanislaw A. Kucharski, Hayes L. Williams, and Betsy M. Rice "Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory", Journal of Chemical Physics 110 pp. 3785- (1999)
  10. Kuang Yu, Jesse G. McDaniel, and J. R. Schmidt "Physically Motivated, Robust, ab Initio Force Fields for CO2 and N2", Journal of Physical Chemistry B 115 pp. 10054-10063 (2011)
  11. Kuang Yu and J. R. Schmidt "Many-body effects are essential in a physically motivated CO2 force field", Journal of Chemical Physics 136 034503 (2012)
  12. Jeffrey J. Potoff and J. Ilja Siepmann "Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen", AIChE Journal 47 pp. 1676-1682 (2001)
  13. Zhigang Zhang and Zhenhao Duan "An optimized molecular potential for carbon dioxide", Journal of Chemical Physics 122 214507 (2005)
  14. Thorsten Merker, Jadran Vrabec, and Hans Hasse "Comment on “An optimized potential for carbon dioxide”", Journal of Chemical Physics 129 087101 (2008)
  15. Zhigang Zhang and Zhenhao Duan "Response to "Comment on 'An optimized potential for carbon dioxide' "", Journal of Chemical Physics 129 087102 (2008)
  16. L. Glasser "Equations of state and phase diagrams", Journal of Chemical Education 79 874 (2002)
  17. A. Herráez, R. M. Hanson, and L. Glasser "Interactive 3D phase diagrams using Jmol" Journal of Chemical Education 86: 566 (2009) and website
  18. G. Pérez-Sánchez, D. González-Salgado, M. M. Piñeiro, and C. Vega "Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: The role of the quadrupole", Journal of Chemical Physics 138 084506 (2013)
  19. C. G. Aimoli, E. J. Maginn and C. R. A. Abreu "Transport properties of carbon dioxide and methane from molecular dynamics simulations", Journal of Chemical Physics 141 134101 (2014)
  20. Thuat T. Trinh, Thijs J. H. Vlugt and Signe Kjelstrup "Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields", Journal of Chemical Physics 141 134504 (2014)

Related reading

External resources[edit]

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.