Canonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
Line 11: Line 11:
''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{NVT} </math>
''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{NVT} </math>


<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math>
:<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math>


where:
where:
Line 27: Line 27:
The  [[Helmholtz energy function]] is related to the canonical partition function via:
The  [[Helmholtz energy function]] is related to the canonical partition function via:


<math> A\left(N,V,T \right) = - k_B T \log  Q_{NVT} </math>
:<math> A\left(N,V,T \right) = - k_B T \log  Q_{NVT} </math>

Revision as of 19:18, 26 February 2007

Variables:

  • Number of Particles,
  • Volume,
  • Temperature,

Partition Function

Classical Partition Function (one-component system) in a three-dimensional space:

where:

  • , with being the Boltzmann constant
  • is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
  • represent the 3N position coordinates of the particles (reduced with the system size): i.e.

Free energy and Partition Function

The Helmholtz energy function is related to the canonical partition function via: