Editing Boltzmann constant

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 3: Line 3:
Its experimentally determined value (in SI units, 2010 [http://physics.nist.gov/cgi-bin/cuu/Value?k#mid  CODATA] value) is:
Its experimentally determined value (in SI units, 2010 [http://physics.nist.gov/cgi-bin/cuu/Value?k#mid  CODATA] value) is:


:<math>k_B =1.3806488 \times 10^{-23} \left. JK^{-1}\right.</math>
:<math>k_B =1.3806488 \times 10^{-23} </math> <math>\left. JK^{-1}\right.</math>
 
 


In units with molecular significance it is close to 1, for example see: [[DL_POLY | DL_POLY units]].
In units with molecular significance it is close to 1, for example see: [[DL_POLY | DL_POLY units]].
Line 10: Line 12:
Max Planck, [http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html Nobel Lecture, June 2, 1920]
Max Planck, [http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html Nobel Lecture, June 2, 1920]
==Experimental determination of Boltzmann's constant==
==Experimental determination of Boltzmann's constant==
Boltzmann's constant can be obtained from the ratio of the [[molar gas constant]] to the [[Avogadro constant]] <ref>[http://dx.doi.org/10.1088/0026-1394/22/3/023 L. Storm "Precision Measurements of the Boltzmann Constant",Metrologia '''22''' pp. 229-234 (1986)]</ref>
Boltzmann's constant can be obtained from the ratio of the [[molar gas constant]] to the [[Avogadro constant]].  
<ref>[http://dx.doi.org/10.1088/0957-0233/17/10/R01  B Fellmuth, Ch Gaiser and J Fischer "Determination of the Boltzmann constant—status and prospects", Measurement Science and Technology  '''17''' pp. R145-R159 (2006)]</ref>.
The molar gas constant can be obtained via acoustic gas thermometry, and Avogadros constant from either the ''Silicon sphere'', or via the watt balance.  
The molar gas constant can be obtained via acoustic gas thermometry, and Avogadros constant from either the ''Silicon sphere'', or via the watt balance.  
Recently laser spectroscopy has been used to determine the constant <ref>[http://dx.doi.org/10.1103/PhysRevLett.98.250801 C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet "Direct Determination of the Boltzmann Constant by an Optical Method", Physical Review Letters '''98''' 250801 (2007)]</ref>
Recently laser spectroscopy has been used to determine the constant (Refs. 3 and 4). Other techniques include Coulomb blockade thermometry (Refs. 5 and 6).
<ref>[http://dx.doi.org/10.1103/PhysRevLett.100.200801  G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani "Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant", Physical Review Letters '''100''' 200801 (2008)]</ref>. Other techniques include Coulomb blockade thermometry <ref>[http://dx.doi.org/10.1103/PhysRevLett.73.2903 J. P. Pekola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen "Thermometry by Arrays of Tunnel Junctions", Physical Review Letters '''73''' pp. 2903-2906 (1994)]</ref>
#[http://dx.doi.org/10.1088/0026-1394/22/3/023 L. Storm "Precision Measurements of the Boltzmann Constant",Metrologia '''22''' pp. 229-234 (1986)]
<ref>[http://dx.doi.org/10.1103/PhysRevLett.101.206801  Jukka P. Pekola, Tommy Holmqvist, and Matthias Meschke "Primary Tunnel Junction Thermometry", Physical Review Letters '''101''' 206801 (2008)]</ref>.
#[http://dx.doi.org/10.1088/0957-0233/17/10/R01  B Fellmuth, Ch Gaiser and J Fischer "Determination of the Boltzmann constant—status and prospects", Measurement Science and Technology  '''17''' pp. R145-R159 (2006)]
#[http://dx.doi.org/10.1103/PhysRevLett.98.250801 C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet "Direct Determination of the Boltzmann Constant by an Optical Method", Physical Review Letters '''98''' 250801 (2007)]
#[http://dx.doi.org/10.1103/PhysRevLett.100.200801  G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani "Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant", Physical Review Letters '''100''' 200801 (2008)]
#[http://dx.doi.org/10.1103/PhysRevLett.73.2903 J. P. Pekola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen "Thermometry by Arrays of Tunnel Junctions", Physical Review Letters '''73''' pp. 2903-2906 (1994)]
#[http://dx.doi.org/10.1103/PhysRevLett.101.206801  Jukka P. Pekola, Tommy Holmqvist, and Matthias Meschke "Primary Tunnel Junction Thermometry", Physical Review Letters '''101''' 206801 (2008)]


==References==
==References==
<references/>
[[Category: Physical constants]]
[[Category: Physical constants]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)