Argon

From SklogWiki
Revision as of 12:29, 1 April 2009 by Dduque (talk | contribs) (Reference to Aziz's potential)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
The Lennard-Jones model for argon.

Argon has a mass of 39.948 umas. Sadus and Prausnitz have shown that three-body repulsion makes a significant contribution to three-body interactions in the liquid phase (Ref. 4) (for use of the Axilrod-Teller interaction see Refs. 5 and 6). However, the generic Lennard-Jones model has been frequently used due to its simplicity; some parameters are quoted in the next section. A specific interatomic potential for Ar has been proposed by Aziz (Ref. 10).

Lennard-Jones parameters

The Lennard-Jones parameters for liquid argon are listed in the following table:

Authors (K) (nm) Reference
Rowley, Nicholson and Parsonage 119.8 0.3405 Ref. 7
Barker, Fisher and Watts 142.095 0.33605 Ref. 8
White 125.7 0.3345 Ref. 9 parameter set #4

Radial distribution function

Radial distribution function

  1. J. L. Yarnell, M. J. Katz, R. G. Wenzel and S. H. Koenig "Structure Factor and Radial Distribution Function for Liquid Argon at 85°K", Physical Review A 7 pp. 2130-2144 (1973)

Quantum simulations

  1. J. R. Melrose and K. Singer "An investigation of supercooled Lennard-Jones argon by quantum mechanical and classical Monte Carlo simulation", Molecular Physics 66 1203-1214 (1989)

References

  1. H. C. Longuet-Higgins and B. Widom "A rigid sphere model for the melting of argon", Molecular Physics 8 pp. 549-556 (1964)
  2. D. Henderson and J. A. Barker "On the solidification of argon", Molecular Physics 14 pp. 587-589 (1968)
  3. F. Lado "Numerical Calculation of the Density Autocorrelation Function for Liquid Argon", Physical Review A 5 pp. 2238-2244 (1972)
  4. Richard J. Sadus and J. M. Prausnitz "Three-body interactions in fluids from molecular simulation: Vapor–liquid phase coexistence of argon", Journal of Chemical Physics 104 pp. 4784-4787 (1996)
  5. Phil Attard "Pair-hypernetted-chain closure for three-body potentials: Results for argon with the Axilrod-Teller triple-dipole potential", Physical Review A 45 pp. 3659-3669 (1992)
  6. J. A. Anta, E. Lomba and M. Lombardero "Influence of three-body forces on the gas-liquid coexistence of simple fluids: The phase equilibrium of argon", Physical Review E 55 pp. 2707-2712 (1997)
  7. L. A. Rowley, D. Nicholson and N. G. Parsonage "Monte Carlo grand canonical ensemble calculation in a gas-liquid transition region for 12-6 Argon", Journal of Computational Physics 17 pp. 401-414 (1975)
  8. J. A. Barker, R. A. Fisher and R. O. Watts "Liquid argon: Monte carlo and molecular dynamics calculations", Molecular Physics 21 pp. 657-673 (1971)
  9. John A. White "Lennard-Jones as a model for argon and test of extended renormalization group calculations", Journal of Chemical Physics 111 pp. 9352-9356 (1999)
  10. Ronald A. Aziz "A highly accurate interatomic potential for argon", Journal of Chemical Physics 99 p. 4518 (1993)
This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.