9-3 Lennard-Jones potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 33: Line 33:


:<math>
:<math>
  V_{W} \left( x \right) = 4 \epsilon_{sf} \rho_{s}  \int_{0}^{2\pi} d \phi \int_{-\infty}^{x} d z \int_{0}^{\infty} \textrm{d r}   
  V_{W} \left( x \right) = 4 \epsilon_{sf} \rho_{s}  \int_{0}^{2\pi} d \phi \int_{-\infty}^{-x} d z \int_{0}^{\infty} \textrm{d r}   
\left[ \sigma^{12} (r^2 + z^2)^{-6}
\left[ \sigma^{12} \frac{ r} {(r^2 + z^2)^{6}}
- \sigma^6 (r^2 + z^2 )^{-3} \right] r .
- \sigma^6 \frac{r}{(r^2 + z^2 )^{3} }\right] .
</math>  
</math>  
:<math>
V_{W} \left( x \right) = 8 \pi  \epsilon_{sf} \rho_{s}  \int_{-\infty}^{-x} {\textrm d z}
\left[  \frac{ \sigma^{12}} { 10 (r^2 + z^2)^5}
- \frac{\sigma^6 }{ 4 (r^2 + z^2 )^{2} }\right]^{r=0}_{r=\infty} .
</math>
: <math>
V_{W} \left( x \right) = 8 \pi  \epsilon_{sf} \rho_{s}  \int_{-\infty}^{-x} {\textrm d z}
\left[  \frac{ \sigma^{12}} { 10 z^{10} }
- \frac{\sigma^6 }{ 4 z^4  } \right];
</math>
: <math>
V_{W} \left( x \right) = 8 \pi  \epsilon_{sf} \rho_{s}  \int_{-\infty}^{-x} {\textrm d z}
\left[  \frac{ \sigma^{12}} { 10 z^{10} }
- \frac{\sigma^6 }{ 4 z^4  } \right];
</math>


[TO BE CONTINUED]
[TO BE CONTINUED]

Revision as of 15:31, 23 March 2007

[EN CONSTRUCCION]

Functional form

The 9-3 Lennard-Jones potential is related to the standard Lennard-Jones potential.

It takes the form:

The minimum value of is obtained at , with

  • ,

Applications

It is commonly used to model the interaction between the particles of a fluid with a flat structureless solid wall.

Interaction between a solid and a fluid molecule

Let us consider the space divided in two regions:

  • : this region is occupied by a diffuse solid with density composed of 12-6 Lennard-Jones atoms

with paremeters and

Our aim is to compute the total interaction between this solid and a molecule located at a position . Such an interaction can be computed using cylindrical coordinates ( I GUESS SO, at least).

The interaction will be:



[TO BE CONTINUED]