1-dimensional hard rods: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Equation of state: Added internal link)
m (Slight tidy up.)
Line 1: Line 1:
A 1-dimensional system having [[hard sphere model | hard sphere]] interactions. The [[statistical mechanics]] of this system can be solved exactly (see Ref. 1).
'''1-dimensional hard rods''' are basically [[hard sphere model | hard spheres]] confined to 1 dimension (not to be confused with [[3-dimensional hard rods]]). The model is given by the [[intermolecular pair potential]]:
== Canonical Ensemble: Configuration Integral ==
 
Consider a system of length <math> \left. L \right. </math> defined in the range <math> \left[ 0, L \right] </math>.
 
Our aim is to compute the [[partition function]] of a system of <math> \left. N \right. </math> hard rods of length <math> \left. \sigma \right. </math>.
 
Model:
 
* External Potential; the whole length of the rod must be inside the range:
 
: <math> V_{0}(x_i) = \left\{ \begin{array}{lll} 0 & ; & \sigma/2 < x < L - \sigma/2 \\
\infty &; & {\rm elsewhere}. \end{array} \right. </math>
 
* [[Intermolecular pair potential]]:


: <math> \Phi (x_i,x_j) = \left\{ \begin{array}{lll} 0 & ; & |x_i-x_j| > \sigma \\
: <math> \Phi (x_i,x_j) = \left\{ \begin{array}{lll} 0 & ; & |x_i-x_j| > \sigma \\
\infty &; & |x_i-x_j| < \sigma \end{array} \right. </math>
\infty &; & |x_i-x_j| < \sigma \end{array} \right. </math>


where <math> \left. x_k \right. </math> is the position of the center of the k-th rod.
where <math> \left. x_k \right. </math> is the position of the center of the k-th rod, along with an external potential; the whole length of the rod must be inside the range:


: <math> V_{0}(x_i) = \left\{ \begin{array}{lll} 0 & ; & \sigma/2 < x < L - \sigma/2 \\
\infty &; & {\mathrm {elsewhere}}. \end{array} \right. </math>
== Canonical Ensemble: Configuration Integral ==
The [[statistical mechanics]] of this system can be solved exactly (see Ref. 1).
Consider a system of length <math> \left. L \right. </math> defined in the range <math> \left[ 0, L \right] </math>. The aim is to compute the [[partition function]] of a system of <math> \left. N \right. </math> hard rods of length <math> \left. \sigma \right. </math>.
Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>;  
Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>;  
taking into account the pair potential we can write the canonical partition function  
taking into account the pair potential we can write the canonical partition function  
Line 55: Line 46:
: <math> \left. A(N,L,T) = - k_B T \log Q \right. </math>
: <math> \left. A(N,L,T) = - k_B T \log Q \right. </math>


In the thermodynamic limit (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = \frac{N}{L} </math>,  remaining finite):
In the [[thermodynamic limit]] (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = \frac{N}{L} </math>,  remaining finite):


:<math>  A \left( N,L,T \right) = N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right)  - 1 \right]. </math>
:<math>  A \left( N,L,T \right) = N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right)  - 1 \right]. </math>

Revision as of 12:24, 20 February 2008

1-dimensional hard rods are basically hard spheres confined to 1 dimension (not to be confused with 3-dimensional hard rods). The model is given by the intermolecular pair potential:

where is the position of the center of the k-th rod, along with an external potential; the whole length of the rod must be inside the range:

Canonical Ensemble: Configuration Integral

The statistical mechanics of this system can be solved exactly (see Ref. 1). Consider a system of length defined in the range . The aim is to compute the partition function of a system of hard rods of length . Consider that the particles are ordered according to their label: ; taking into account the pair potential we can write the canonical partition function (configuration integral) of a system of particles as:

Variable change:  ; we get:

Therefore:

Thermodynamics

Helmholtz energy function

In the thermodynamic limit (i.e. with , remaining finite):

Equation of state

Using the thermodynamic relations, the pressure (linear tension in this case) can be written as:

where ; is the fraction of volume (i.e. length) occupied by the rods.

References

  1. Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
  2. L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
  3. L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)