1-dimensional hard rods: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 26: Line 26:
Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>;  
Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>;  


taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of <math> N </math> particles as:
:taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of <math> N </math> particles as:


: <math>
: <math>
Line 37: Line 37:
Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get:
Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get:


: <math>
<math>
\frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0  
\frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0  
\int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots  
\int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots  
Line 52: Line 52:
Q(N,L) = \frac{ (V-N)^N}{\Lambda^N N!}.
Q(N,L) = \frac{ (V-N)^N}{\Lambda^N N!}.
</math>
</math>
== Thermodynamics ==
[[Helmholz energy function]]
: <math> \left. A(N,L,T) = - k_B T \log Q \right. </math>
In the thermodynamic limit (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = N/L </math> remaining finite:


==References==
==References==

Revision as of 12:47, 27 February 2007

Hard Rods, 1-dimensional system with hard sphere interactions.

The statistical mechanics of this system can be solved exactly (see Ref. 1).

Canonical Ensemble: Configuration Integral

This part could require further improvements

Consider a system of length defined in the range .

Our aim is to compute the partition function of a system of hard rods of length .

Model:

  • External Potential; the whole length of the rod must be inside the range:
  • Pair Potential:

where is the position of the center of the k-th rod.

Consider that the particles are ordered according to their label: ;

taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of particles as:

Variable change:  ; we get:

Therefore:

Thermodynamics

Helmholz energy function

In the thermodynamic limit (i.e. with remaining finite:

References

  1. Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
  2. L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
  3. L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)