MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "batchcomplete": "",
    "continue": {
        "gapcontinue": "ReaxFF_force_field",
        "continue": "gapcontinue||"
    },
    "warnings": {
        "main": {
            "*": "Subscribe to the mediawiki-api-announce mailing list at <https://lists.wikimedia.org/postorius/lists/mediawiki-api-announce.lists.wikimedia.org/> for notice of API deprecations and breaking changes."
        },
        "revisions": {
            "*": "Because \"rvslots\" was not specified, a legacy format has been used for the output. This format is deprecated, and in the future the new format will always be used."
        }
    },
    "query": {
        "pages": {
            "457": {
                "pageid": 457,
                "ns": 0,
                "title": "Reaction field",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "{{Stub-general}}\nThe '''reaction field''' method, sometimes known as the Onsager reaction field <ref>[http://dx.doi.org/10.1021/ja01299a050 Lars Onsager \"Electric Moments of Molecules in Liquids\", Journal of the American Chemical Society '''58''' pp. 1486-1493 (1936)]</ref>, was introduced by Barker and Watts <ref>[http://dx.doi.org/10.1080/00268977300102101 J. A. Barker and R. O. Watts \"Monte Carlo studies of the dielectric properties of water-like models\", Molecular Physics '''26''' pp. 789-792 (1973)]</ref><ref>[http://dx.doi.org/10.1080/00268977400102381 R. O. Watts \"Monte Carlo studies of liquid water\", Molecular Physics '''28''' pp. 1069-1083 (1974)]</ref>.\n==Damped reaction field method==\n<ref>[http://dx.doi.org/10.1063/1.4898147 Victor H. Elvira and Luis G. MacDowell \"Damped reaction field method and the accelerated convergence of the real space Ewald summation\", Journal of Chemical Physics '''141''' 164108 (2014)]</ref>.\n==Vapour-liquid equilibria==\n<ref>[http://dx.doi.org/10.1016/0009-2614(94)01298-9  Benito Garz\u00f3n, Santiago Lago and Carlos Vega \"Reaction field simulations of the vapor-liquid equilibria of dipolar fluids: Does the reaction field dielectric constant affect the coexistence properties?\", Chemical Physics Letters '''231''' pp. 366-372 (1994)]</ref>\n==Anisotropic models==\n[[Monte Carlo]] simulations have been performed for dipolar anisotropic models ([[hard spherocylinders]] <ref>[http://dx.doi.org/10.1080/002689797170004 Alejandro Gil-Villegas, Simon C. McGrother and George Jackson  \"Reaction-field and Ewald summation methods in Monte Carlo simulations of dipolar liquid crystals\", Molecular Physics '''92''' pp. 723-734 (1997)]</ref> and the [[Gay-Berne model]] <ref>[http://dx.doi.org/10.1080/002689798167944 Mohammed Houssa, Abdelkrim Oualid and Luis F. Rull \"Reaction field and Ewald summation study of mesophase formation in dipolar Gay-Berne model\", Molecular Physics '''94''' pp. 439-446 (1998)]</ref>), both indicating that the results for the reaction field and the [[Ewald sum]] are equivalent. However, the reaction field presents a considerable reduction in the computer time required.\n==Related pages==\n*[[Ewald sum]]\n==References==\n<references/>\n;Related reading\n*[http://dx.doi.org/10.1080/00268978000100361 Martin Neumann and Othmar Steinhauser \"The influence of boundary conditions used in machine simulations on the structure of polar systems\", Molecular Physics '''39''' pp. 437-454 (1980)]\n*[http://dx.doi.org/10.1080/00268978400101081 Martin Neumann, Othmar Steinhauser and G. Stuart Pawley \"Consistent calculation of the static and frequency-dependent dielectric constant in computer simulations\", Molecular Physics '''52''' pp. 97-113 (1984)]\n*[http://dx.doi.org/10.1063/1.448553 Martin Neumann \"The dielectric constant of water. Computer simulations with the MCY potential\", Journal of Chemical Physics '''82''' pp. 5663-5672 (1985)]\n*[http://dx.doi.org/10.1063/1.3081138 Andrij Baumketner \"Removing systematic errors in interionic potentials of mean force computed in molecular simulations using reaction-field-based electrostatics\", Journal of Chemical Physics '''130''' 104106 (2009)]\n[[category:Electrostatics]]\n[[category: Computer simulation techniques]]"
                    }
                ]
            },
            "561": {
                "pageid": 561,
                "ns": 0,
                "title": "Realistic models",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "'''Realistic models''' are usually variants of [[idealised models]], parametrised to study a specific atomic or molecular system with a certain degree of realism. These models are, more often than not, designed to reproduce a subset of experimental physical properties, thus a certain model may be more suitable to a particular study, whist quite possibly being wholly inadequate in the study of a distinct question. \n{{columns-list|3|\n====Alcohols====\n*[[Methanol]]\n*[[Ethanol]]\n*[[Propanol]]\n*[[Butanol]]\n====Alkali halides====\n*[[Caesium fluoride]]\n*[[Lithium bromide]]\n*[[Lithium chloride]]\n*[[Lithium fluoride]]\n*[[Lithium iodide]]\n*[[Potassium bromide]]\n*[[Potassium chloride]]\n*[[Potassium fluoride]]\n*[[Potassium iodide]]\n*[[Rubidium chloride]]\n*[[Sodium bromide]]\n*[[Sodium chloride]]\n====Alkanes====\n*[[Methane]]\n*[[Ethane]]\n*[[Propane]]\n*[[Butane]]\n*[[Pentane]]\n*[[Hexane]]\n**[[Cyclohexane]]\n*[[Heptane]]\n*[[Octane]]\n====Metals====\n*[[Bismuth]]\n*[[Copper]]\n*[[Gallium]]\n*[[Germanium]]\n*[[Iron]]\n*[[Lead]]\n*[[Lithium]]\n*[[Magnesium]]\n*[[Nickel]]\n*[[Potassium]]\n*[[Sodium]]\n*[[Tellurium]]\n*[[Terbium]]\n*[[Thallium]]\n*[[Tin]]\n*[[Titanium]]\n====Noble gases====\n*[[Helium]]\n*[[Neon]]  \t\n*[[Argon]]\n*[[Krypton]]\n*[[Xenon]]\n*[[Radon]]\n====Miscellaneous molecular liquids====\n*[[Acetone]]\n*[[Acetonitrile]]\n*[[Ammonia]]\n*[[Benzene]]\n*[[Boron]]\n*[[C36]]\n*[[C60]]\n*[[Calcium aluminosilicate]]\n*[[Carbon]]\n*[[Carbon dioxide]]\n*[[Carbon disulfide]]\n*[[Carbon monoxide]]\n*[[Chloroform]]\n*[[Copper iodide]]\n*[[Coronene]]\n*[[Difluoroethane]]\n*[[Dimethyl ether]]\n*[[Dimethyl sulfoxide]]\n*[[Ethylene glycol]]\n*[[Germanium dioxide]]\n*[[Hydrogen]]\n*[[Hydrogen fluoride]]\n*[[Hydrogen chloride]]\n*[[Simulations of real liquid crystal systems | Liquid crystals]]\n*[[Magnesium oxide]]\n*[[Methanesulfonylmethane]]\n*[[Nitrogen]]\n*[[Nitromethane]]\n*[[Nitrous oxide]]\n*[[Phosphorus]]\n*[[Poly(ethylene oxide)]]\n*[[Poly(methylphenylsiloxane)]]\n*[[Poly(methylene)]]\n*[[Proteins]]\n*[[Silicon]]\n*[[Silica]]\n*[[Sulfur]]\n*[[Sulfur hexafluoride]]\n*[[Tetrachloromethane]]\n*[[Tetrafluoromethane]]\n*[[Titanium dioxide]]\n*[[Trimethylphosphine]]\n*[[Triphenyl phosphite]]\n*[[Urea]]\n*[[Water models |Water]]\n*[[Yttria\u2013alumina]]\n}}\n\n__NOTOC__\n[[category:models]]\n[[category:Computer simulation techniques]]"
                    }
                ]
            }
        }
    }
}